BlueGene/L

Hardware Architecture Overview

BlueGene/L design team IBM Research

BG/L Hardware Architecture - October 2003

- Ruud Haring: BlueGene/L Compute Chip Overview
- Dirk Hoenicke: BLC chip microarchitecture, networks
 & performance

Gerry Kopcsay: Power, Packaging, Cooling

Blue Gene/L Partners

Joint Partnership between IBM and Tri-Lab (Lawrence Livermore, Los Alamos, Sandia) ASCI Community.

External Collaborations

- Argonne National Lab
- Barcelona
- Boston University
- Caltech
- Columbia University
- National Center for Atmospheric Research
- Oak Ridge National Lab
- San Diego Supercomputing Center
- Stanford
- Technical University of Vienna
- Trinity College Dublin
- Universidad Politecnica de Valencia
- University of New Mexico
- University of Edinburgh
- University of Maryland

What is BG/L

- A 64k node highly integrated supercomputer based on system-on-a-chip technology.
 - Two ASICs:
 - ► BlueGene/L Compute (BLC)
 - ► BlueGene/L Link (BLL)
- Focus is on numerically intensive scientific problems.
- 180-360 TFlop peak performance.
- Strategic partnership with LLNL.
 - Validation and optimization of architecture based on real applications
 - Accustomed to "new architectures" and will work hard to adapt to constraints.
 - Assist us in the investigation of the reach of this machine
- Grand challenge science stress
 - I/O, memory (bandwidth, size and latency), and processing power.

Brief History

IEW.

- · QCDSP (600GF based on Texas Instruments DSP C31)
 - -Gordon Bell Prize for Most Cost Effective Supercomputer in '98
 - -Columbia University Designed and Built
 - -Optimized for Quantum Chromodynamics (QCD)
 - -12,000 50MF Processors
 - -Commodity 2MB DRAM
- · QCDOC (20TF based on IBM System-on-a-Chip)
 - -Collaboration between Columbia University and IBM Research
 - -Optimized for QCD
 - -IBM 7SF Technology (ASIC Foundry Technology)
 - -20,000 1GF processors (nominal)
 - -4MB Embedded DRAM + External Commodity DDR/SDR SDRAM
- · Blue Gene/L (180/360 TF based on IBM System-on-a-Chip)
 - -Designed by IBM Research in IBM CU-11 Technology
 - -64,000 2.8GF dual processors (nominal)
 - -4MB Embedded DRAM + External Commodity DDR SDRAM

10/17/2003 5

Cost/Performance

BlueGene/L is cost/performance optimized for a <u>wide class</u> of parallel applications.

Cost

- Machine
- Facilities
- Hardware Support and Maintenance
- Software Support
 - ▶ system
 - application

Performance

- ► Peak speed
- Scaleability
- Availability
- Useability
 - ► tools , debuggers, performance analysis
 - ► compilers, libraries, frameworks

power is the dominant factor

BG/L Project Motivation

- System on-a-chip offers tremendous cost/performance advantages.
 - Power, Size, Complexity, Design Effort
 - Allows for low latency, high bandwidth memory system
- Scalability of applications to ~100k processors is important research with potentially great payoff.
- Some special purpose machines have had tremendous success using massively parallel.
- Some algorithms are currently scaling to ~thousands of processors

8

BlueGene/L

BlueGene/L System Host

BlueGene/L Compute ASIC

BLC ASIC

- All SRAMs in are ECC protected -- except L1 caches in PPC440 and Ethernet
- L1 caches in 440 cores are parity protected with multiple operating modes
- Most internal busses have parity detection
- eDRAM is ECC protected
- Controller for external DRAM supports memory scrub and ECC with nibble kill reliability.
 Bit sparing allows for swapping in spare nibble for further reliability.
- All error types can be counted and used for predictive failure analysis

Networks:

- 24 packet CRC + 32 bit "static" CRC
- Hardware retry for all CRC fails. Never seen an escape through protocol
- Optional error injection allows for aggressive testing of link protocol coverage
- Links are temperature and voltage compensating

Hardware support for fault isolation

- Can determine first node that generates a non-repeatable computation in a deterministic calculation
- Redundancy in power, cooling and cabling

The BG/L Networks

3 Dimensional Torus

Point-to-point

Global Tree

Global Operations

Global Barriers and Interrupts

• Low Latency Barriers and Interrupts

Gbit Ethernet

• File I/O and Host Interface

Control Network

Boot, Monitoring and Diagnostics

Floor plan

- IBM Cu-11 (0.13 mu technology) ASIC with:
 - hard cores -- dual (PPC440 + double FPU), PLL
 - > soft cores -- Ethernet /DMA sub-system
 - custom I/O books for high speed signaling
 - eDRAM (32 Mb/chip)
 - SRAM (~2 Mb/chip), fuses, ECID
- "Custom design" twist: bitstacks
 - guided placement, auto wiring
 - critical for high speed send/capture of serialized Torus/Tree
 - far exceeds "normal" ASIC speeds -- up to 1.4 GHz clock.
 - Organizes wiring congestion at wide eDRAM ports
- IBM E&TS (Rochester, MN) style PD and test
 - careful clock design -- about 90 clock signals; 30 clock sub-domains
 - JTAG-based co-processor for in-system test/bring-up

Physical Design

Chip area usage

Prototype Bring-Up

- BLC DD1.0 Power-On on 06/16/2003
- Presently (10/10) > 600 chips running in various test stations
 - > 1,2,8,32,128, 256, 512-ways
 - > running anything from low level tests to applications to benchmarks
 - No show stoppers found.
- The hardware works! Pace of bring-up limited by s/w and resources.
 - Outlook is good to do DD2.0 RIT in November
- BLC DD2.0 (production version):
 - No major functional difference
 - Better frequency
 - Improvements for robustness, diagnostics, error recovery.

Control Network

Service Processor: 100Mb Ethernet to JTAG interface

- Direct access to any node
 - **►** Partitioning
 - **►** Configuration
- Direct access to shared SRAM in every node
 - > boot-up code
 - > messaging node <-> service processor

I/O Nodes

- In-system debug facilities
- Runtime noninvasive RAS support.

 Non-invasive access to performance 100Mb Ethernet counters Ethernet-to-JTAG **Compute Nodes**

Service and Control Path

Logic design

► Architect Alan Gara

► Hummer2 Chuck Wait + team

▶ L2 Dirk Hoenicke, Martin Ohmacht

► L3, SRAM, Lockbox Martin Ohmacht

► DDR controller Jim Marcella

► Torus Dong Chen, Pavlos Vranas, Sarabjeet Singh

► Tree Dirk Hoenicke, Matt Blumrich

► High Speed Serial Comm Alan Gara, Dong Chen, Sarabjeet Singh

▶ Global Interrupts
Dong Chen, Alan Gara

► EMAC4/PLB/DCR/BIC Martin Ohmacht

▶ Performance Counters Dirk Hoenicke

► Clock Tree Matt Ellavsky

► Test & Bring-up structures Marc Dombrowa, Ruud Haring,

Steve Douskey, Mike Hamilton, Jim Marcella

► IOs Ruud Haring

▶ Logic integration
Martin Ohmacht, Marc Dombrowa

▶ Libraries Dan Beece

Logic verification

► Team lead Alan Gara

► Stage releases Martin Ohmacht

► Model build, infrastructure Dan Beece, Ruud Haring,

Sandy Woodward + team

► Regression Lurng-Kuo Liu

► Hummer2 Chuck Wait + team

► Memory sub-system Ben Nathanson, Brett Tremaine,

Mike Wazlowski, Li Shang + designers

Jim Goldade

► Torus Phil Heidelberger, Mike Wazlowski

+ designers

► Tree Burkhard Steinmacher, Brett Tremaine

+ designers

► Tree Formal Dirk Hoenicke, Steve German, Chris Zoellin

► High Speed Serial Comm Gerry Kopcsay, Minhua Lu

► Global Interrupts Lurng-Kuo Liu

► Ethernet Valentina Salapura, Jose Brunheroto

► IPL & Bring-up Marc Dombrowa, Ralph Bellofatto,

Dong Chen, Martin Ohmacht

► Test structures Steve Douskey + team

▶ Directed test cases
Krishna Desai + team (Bangalore)

10/17/2003 21

Floor planning, synthesis, timing, DFT

► Team leads Ruud Haring, Greg Ulsh, Fariba Kasemkhani

► Floor Planning Terry Bright► IO assignments Ruud Haring

► Clocks Matt Ellavsky

► Synthesis & pre-PD timing Terry Bright, Jim Marcella, Chris Zoellin

Dirk Hoenicke, Martin Ohmacht, Marc Dombrowa, Sarabjeet Singh

► Synthesis & timing support Gay Eastman, Scott Mack + team

Design for Testability
Marc Dombrowa

► AC test / AC-Lite Ruud Haring

Physical Design

► Team lead Bob Lembach

▶ Bit stacks▶ Interface, ECO coordinationTerry BrightJim Marcella

► Clock Tree Matt Ellavsky, Bruce Rudolph, Sean Evans

► Physical Design Mike Rohn, Cory Wood, Bruce Winter

+ others

▶ post-PD timing closure
Jim Marcella, Todd Greenfield + team

► Verity Jim Marcella, Terry Bright

IBM Microelectronics

► Interface Scott Bancroft

► CDS, RFQ Terry Bright, Ruud Haring, Greg Ulsh,

Paul Coteus, Mike Shapiro (IMD Austin)

Glen Smith (IMD RTP), Kurt Carlsen (IMD BtV)

▶.....

► AEs

